Polyaspartic acid

News

  • Home
  • Hydrogels Based on Poly(aspartic acid): Synthesis and Applications

крас . 09, 2024 16:10 Back to list

Hydrogels Based on Poly(aspartic acid): Synthesis and Applications

This review presents an overview on the recent progress in the synthesis, crosslinking, interpenetrating networks, and applications of poly(aspartic acid) (PASP)-based hydrogels. PASP is a synthetic acidic polypeptide that has drawn a great deal of attention in diverse applications due particularly to its biocompatibility and biodegradability. Facile modification of its precursor, poly(succinimide) (PSI), by primary amines has opened a wide window for the design of state-of-the-art hydrogels. Apart from pH-sensitivity, PASP hydrogels can be modified with suitable species in order to respond to the other desired stimuli such as temperature and reducing/oxidizing media as well. Strategies for fabrication of nanostructured PASP-based hydrogels in the form of particle and fiber are also discussed. Different cross-linking agents for PSI/PASP such as diamines, dopamine, cysteamine, and aminosilanes are also introduced. Finally, applications of PASP-based hydrogels in diverse areas particularly in biomedical are reviewed.

Keywords: hydrogels, poly(aspartic acid), poly(succinimide), crosslinking, nanoparticles, interpenetrating polymer networks (IPNs)
Go to:

Introduction

Hydrogels are 3-D networks composed of water-soluble polymer chains linked together by chemical or physical bonds. They are employed as carriers for delivery of bioactive agents, as wound healing films, bio-sensing materials, implants, and scaffolds in tissue engineering, etc. (Ullah et al., 2015; Wang L. et al., 2016; Al Harthi et al., 2019). In the presence of water, instead of dissolution, hydrogels are swollen from a few to several times of their own dry weight depending on the crosslinking degree. Similar to water-soluble polymers, based on their chemical structures, hydrogels can be divided into anionic (Ullah et al., 2015), cationic (Qi et al., 2018), non-ionic (Golabdar et al., 2019), and zwitterionic (Vatankhah-Varnosfaderani et al., 2018).

Anionic polymers, which are essentially poly(acid)s, show globule to coil transition upon pH increment and/or reduction of ionic strength (Abu-Thabit and Hamdy, 2016; Meka et al., 2017). This behavior is reflected in hydrogels as swelling when the polymer is cross-linked (Varaprasad et al., 2017). Aside from polysaccharide-based anionic polymers, most of anionic hydrogels are not biodegradable, thereby posing environmental problems and creating pollution challenges in the long-term (Guilherme et al., 2015; Pakdel and Peighambardoust, 2018). Therefore, seeking a suitable substitute that is biodegradable and non-toxic is of outmost importance.

Poly(aspartic acid) (PASP), a synthetic poly(amino acid) with a protein-like amide bond in its backbone, and a carboxylic acid as a pendant group in each repeating unit, has drawn a great deal of attention and so the demand for its production has significantly grown. The former bond provides PASP with degradability (Nakato et al., 1998; Tabata et al., 2000, 2001), while the latter groups gives the polymer acidic properties and negative charge (Yang et al., 2011; Sattari et al., 2018). Various enzymes such as trypsin (Zhang C. et al., 2017), chymotrypsin (Wei et al., 2015), dispase and collagenase I (Juriga et al., 2016), as well as different media such as activated sludge (Alford et al., 1994) and river water (Tabata et al., 2000) have been examined for biodegradation of PASP-based hydrogels and polymers. Depending on the condition (e.g., enzyme concentration and temperature), complete degradation varies from a few days to one month.

PASP hydrogels typically exhibit the same response to pH and ionic strength as other anionic ones, such that higher swelling ratio can be achieved by increasing pH or lowering ionic strength (Zhao et al., 2005; Sharma et al., 2014). This property, which is called polyelectrolyte effect, stems from ionization of carboxylic groups. Ionization (or de-protonation) creates negative charges along the chain/network, causing extended chain conformation and globule to coil transition. On the other hand, high ion concentration shields the network charge and lowers swelling (Yang et al., 2006). Additionally, by changing crosslinking density, mechanical properties and swelling could be tuned (Vatankhah-Varnoosfaderani et al., 2016). More importantly, PASP hydrogels can be readily modified with a wide variety of species to meet the need of any given application. This feature arises from highly reactive imide rings in the intermediate poly(succinimide) (PSI), which allow grafting of different molecules bearing primary amine group under mild conditions without using any catalyst. Therefore, considering facile modification, biocompatibility, and biodegradability, PASP-based hydrogels offers potential advantages over conventional anionic hydrogels [e.g., poly(acrylic acid)] and can be considered as a promising choice for hydrogel preparation in diverse applications.

In the light of the aforementioned features, in this paper we provide a review on the synthesis, gelation process, cross-linking agents, and recent applications of hydrogels based on PASP.

Go to:

Synthesis of Polyaspartic Acid

PASP homopolymer is generally synthesized through poly-condensation of aspartic acid (ASP) monomer or polymerization of maleamic acid which is produced from maleic anhydride and a nitrogen source like ammonia or urea as shown in Figure 1. Whatever the method is, the reaction yields the intermediate poly(anhydroaspartic acid), i.e., poly(succinimide) (PSI). The subsequent alkaline hydrolysis of PSI leads to imide ring opening through either carbonyl groups, resulting in a mixture of α and β. Also, as mentioned, PSI can easily undergo a nucleophilic reaction with primary and secondary amines without catalyst even at room temperature to yield poly(aspartamide) derivatives, allowing one to tailor-make PASP to be exploited as a versatile and multi-functional hydrogels (Feng et al., 2014; Nayunigari et al., 2014; Zhang S. et al., 2017).

 
An external file that holds a picture, illustration, etc.Object name is fchem-07-00755-g0001.jpg
Figure 1

Synthesis procedure of PSI, PASP, and poly(aspartamide). PSI can either be obtained through poly-condensation (usually at elevated temperature >160°C using an acid as the catalyst) of ASP or malic acid (synthesized by maleic anhydride and a nitrogen source such as urea or ammonia). PSI can be hydrolysed under alkali media to yield PASP or reacted with primary amines (without catalyst at room temperature) to yield poly(aspartamide) derivatives. The ring opening of succinimde groups occurs both at α and β sites in amidation and hydrolysis reaction.

Poly-Condensation of Aspartic Acid

Thermal poly-condensation of ASP at elevated temperatures (typically higher than 160°C) can either be conducted in bulk (Nakato et al., 2000; Zrinyi et al., 2013) or in solution (Low et al., 1996; Tomida et al., 1997a) in the presence or absence of a catalyst. The reaction by-product, i.e., water, should be eliminated during the course of polymerization. The most effective solvent and catalyst have been found to be the mixture of mesitylene/sulfolane (7/3, w/w) and phosphoric acid, respectively (Tomida et al., 1997a). The reactions catalyzed by phosphoric acid yield linear chain whereas uncatalyzed reactions lead to branching (Wolk et al., 1994). High temperature, high catalyst, and aspartic acid monomer concentration can significantly increase molecular weight (Mw) (Jalalvandi and Shavandi, 2018; Yavvari et al., 2019). Recent studies have also shown when phosphoric acid is utilized as both catalyst and polymerization media (aspartic acid monomer: phosphoric acid, 1:1), PASP with high Mw and reaction yield is achieved (Zakharchenko et al., 2011; Moon et al., 2013; Szilágyi et al., 2017). It is noteworthy to mention that the use of solvent though improves heat transfer, it may reduce the reaction rate, as the availability of functional groups (NH2 and COOH) is reduced (Stevens, 1990). Additionally, solvent should be removed after the reaction by washing polymer. Therefore, bulk reaction under batch and continuous (through extruder) conditions is preferable in industry (Kokufuta et al., 1978; Nakato et al., 2000; Zrinyi et al., 2013).

Polymerization of Maleamic Acid/Ammonium Salt of Maleic Acid

The second method involves polymerization of maleamic acid without catalyst for 6–8 h at high temperature (>160°C), during which period water is removed by distillation (shown in Figure 1) (Koskan and Meah, 1993; Wood, 1994; Boehmke and Schmitz, 1995; Ni et al., 2006; Shi et al., 2016). Maleamic acid is prepared by reacting maleic anhydride (MA) (or maleic acid) with anhydrous ammonia or urea as a nitrogen source or heating the monoammonium salt of maleic acid. This method was first introduced as a patent by Boehmke, where PASP was synthesized with a relatively low degree of polymerization 15–20%, using ammonia (AN) and MA which was heated in water (at 75°C) to change to maleic acid (Boehmke, 1989). The reaction is typically carried out without solvent in a reactor, oven (Freeman et al., 1995), or under microwave irradiation (Huang et al., 2007). Although this method employs industrially inexpensive and available raw materials such as maleic anhydride and ammonia, it gives low yields and low molecular weight (Boehmke, 1989; Koskan and Meah, 1993; Wood, 1994; Boehmke and Schmitz, 1995; Freeman et al., 1995; Ni et al., 2006; Huang et al., 2007; Shi et al., 2016).

Go to:

Crosslinking

Commonly, hydrogels based on PASP are prepared either via crosslinking of PSI followed by alkali hydrolysis, or by crosslinking of PASP itself. Various types of crosslinking agents can be used. Because of the simplicity, the agent is generally introduced by PSI modification or the gelation process itself is carried out on PSI followed by alkali hydrolysis.

Hydrogels Based on Diamines

Simple succinimide ring opening by primary amines allows the use of various diamines for the synthesis of a PASP hydrogel (Jalalvandi and Shavandi, 2018). This reaction occurs at room temperature without requiring any catalyst (Fang et al., 2006a,b). Gyenes et al. (2008) employed different natural amines and amino acid derivatives such as putrescin, spermine, spermidine, lysine, and cystamine for crosslinking. They indicated that the cystamine-based hydrogels dissolve above pH 8.5 as the disulfide linkage breaks under alkaline media. Gyarmati et al. (2015) reported the synthesis of super-macroporous PASP hydrogels using 1,4-diaminobutane as a cross-linker under cryogenic condition of DMSO. Phase separation was induced by freezing DMSO as the solvent of PSI. As a result, highly porous interconnective hydrogels (pore size 9–259 μm) was fabricated, which is useful for in vitro cell seeding with pH-induced detachment of the grown cells. In a similar study, aside from chemical crosslinking with hexamethylenediamine (HMDA), freeze/thaw technique was also applied to induce phase separation and physical crosslinking (Zhao and Tan, 2006). Swelling behavior was highly affected by changing freeze/thaw cycle number, time, and temperature. Chen et al. (2016) also prepared PASP superabsorbent cross-linked by HMDA in the presence of organic bentonite (OB) with high swelling capacity (491 g/g in water). It was shown that OB can serve as a crosslinker due to its surface amine groups since high OB content (above 3%) led to lower swelling.

Hydrogels Based on Disulfide Bond

Crosslinking through disulfide or thiol containing agents endows an interesting feature to the PASP-based hydrogels. The reaction of thiol to disulfide can be carried out under application of a reducing agent. This reaction can be reversed in the presence of an oxidizing agent. Therefore, PSI is generally modified with thiol groups (cysteamine or cystamine) for the preparation of reducing/oxidizing-responsive PASP hydrogels (Molnar et al., 2014). In order to maintain structural integrity in different media, a permanent linker such as a diamine can be employed (Figure 3A; Zrinyi et al., 2013; Krisch et al., 2018). Recently, such dual cross-linked hydrogels have drawn a great deal of attention due to swelling under reductive state. For instance, Zrinyi et al. (2013) synthesized PASP with diaminobutane (DAB), and cystamine (CYS) as permanent and cleavable crosslinkers, respectively. They showed that disulfide bonds arising from the latter is broken by the addition of a reducing agent, leading to an increase in swelling and a decrease in modulus. Likewise, redox- and pH-responsive PASP hydrogels were prepared by dual crosslinking using cysteamine, and 1,4-diaminobutane which creates reversible and irreversible bonds, respectively (Gyarmati et al., 2014). It was indicated that swelling degree of hydrogel and elastic modulus can be tuned by reducing/oxidizing agents without hydrogel disintegration/dissolution. Swelling increased as pH increased both under oxidized and reduced states. However, under the latter condition, swelling was higher. The hydrogels maintained their mechanical stability under repeated redox cycles for at least three cycles and the reversibility was shown to be independent of initial redox state of PASP (reduced or oxidized) (Figures 2A,B). Krisch et al. (2018) employed poly(ethylene glycol) diglycidyl ether (PEGDGE) for crosslinking thiolated PASP in order to secure structural integrity of the hydrogels in reducing media. A part of thiol groups were reacted with the former to establish a non-cleavable gel junction while the remaining ones were oxidized into breakable disulfide bonds. It should be noted that the epoxide groups with thiol groups form unbreakable S-C bonds.

 
An external file that holds a picture, illustration, etc.Object name is fchem-07-00755-g0002.jpg
Figure 2

PASP hydrogels based on disulfide bonds. (A) Swelling of PASP hydrogels cross-linked with cysteamine in reduced and oxidized states as a function of pH shows conventional behavior of anionic hydrogels, swelling under reduced condition is higher. (B) Elastic modulus of the corresponding hydrogels shows reversible increase and decrease upon oxidation/reduction. Reproduced from Gyarmati et al. (2014) with permission from The Royal Society of Chemistry.

Hydrogels Based on Dopamine

Catechol moieties in dopamine exhibit a multifunctional characteristic for the design of mussel-inspired coatings (Ryu et al., 2015, 2018; Saiz-Poseu et al., 2019). Complex formation of catechol with boron and/or iron ions (Fe3+) can be employed for hydrogel preparation (Vatankhah-Varnoosfaderani et al., 2014; Krogsgaard et al., 2016). Injectable dopamine modified PASP hydrogels with superior adhesive character were synthesized by complexation with Fe3+ ions (gelation time around 1 min; Figure 3B; Gong et al., 2017). It was suggested that the resulting crosslinking are composed of both Fe3+ coordination as well as covalent quinone-quinone bonds. Boric acid was also shown to crosslink dopamine-modified PASP and yield hydrogels due to boron–catechol coordination (Wang B. et al., 2016). The prepared hydrogels had autonomous self-healing feature due to such a coordination.

 
An external file that holds a picture, illustration, etc.Object name is fchem-07-00755-g0003.jpg
Figure 3

PASP hydrogels prepared by different cross-linkers. (A) PASP hydrogel with a permanent and a cleavable cysteamine cross-linker exhibited response to oxidation/reduction without the gel dissolution. (B) Modification of PSI with dopamine led to PASP with catechol pendant groups which can establish complex with Fe3+ ions, and form hydrogel as a results; adapted from Gong et al. (2017) with permission from Wiley. (C) Synthesis of injectable PASP hydrogels by introduction of aldehyde and amine groups on PASP. Reproduced from Lu et al. (2014) with permission from Wiley. (D) Allyl amine as a monomer that is polymerized via radical polymerization is grafted onto PASP; the subsequent polymerization of allyl amine gives rise to PASP-based hydrogel. (E) Application of gamma-irradiation for crosslinking of PASP. (F) Grafting of APTS as an aminosilane on PSI backbone followed by its hydrolysis.

Other Hydrogels

Apart from diamine and disulfide crosslinking, other strategies have also been developed for fabrication of PASP hydrogels. The reaction of hydrazine and aldehyde, radical polymerization of pendant double bond, sol-gel reaction of aminosilane, and application of gamma-irradiation are some examples that will be discussed in this section for preparation of PASP hydrogels.

Lu et al. (2014) prepared injectable PASP-based hydrogel through introduction of hydrazine and aldehyde to PSI backbone by hydrazine hydrate and 3-amino-1,2-propanediol, respectively. Therefore, hydrazine and aldehyde modified PASPs were used as two gel precursors as shown in Figure 3C. The same strategy was used for crosslinking of oxidized alginate and polyaspartamide conjugated with RGD peptide (Jang and Cha, 2018).

Conventional radical polymerization of allyl amine monomer grafted onto PSI can also lead to crosslinking (Figure 3D; Umeda et al., 2011; Némethy et al., 2013). Minimum value of allyl amine content was found to be 5% for gel formation (Umeda et al., 2011).

Gamma-irradiation can be typically utilized for crosslinking of polymers as it delivers high amount of energy and is capable of forming free radical on polymer backbone. Using such radiation (dosage of 32–100 kGy), Tomida et al. (1997b) prepared PASP hydrogel (Figure 3E). It was shown that the reaction should be conducted under N2 atmosphere as oxygen scavenges free radicals. It was also found that low polymer concentration, as well as low Mw does not lead to gelation and also acidic conditions destabilize the generated radicals.

γ-aminopropyltriethoxysilane (APTS) (an aminosilane) is generally used for attachment of organic/inorganic materials, and surface modification (Adelnia et al., 2015; Bidsorkhi et al., 2017). Its amine and hydroxyl groups make it an excellent candidate as a linker. Meng et al. (2016) introduced APTS on PSI backbone and used it as a crosslinker for PASP gel formation (Figure 3F).

Ethylene glycol diglycidyl ether (EGDGE) can also react with PASP to yield hydrogels (at 180°C for 30 min, dry state, pH before drying 5–6.5) (Chang and Swift, 1999). As the degree of ionization of PASP as well as the protonation of epoxide ring is highly dependent on pH, crosslinking occurs at optimum pH of 5–6.5. Acidic media hydrolyse epoxide group whereas alkaline media reduce the protonated acid group concentration required for nucleophilic attack on the epoxide ring. Meng et al. (2015) however, utilized EGDGE for PSI crosslinking and compared it with hydrazine as a diamine. The produced bonds of the former and the latter are ester and amide, respectively. The PASP hydrogels with the latter had faster swelling kinetic, while lower stability in terms of maintaining the absorbed water.

Share

If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


belBelarusian